
Certitude – Kubernetes Security – Challenge and Opportunity

Kubernetes Security
Challenge and Opportunity

@nimmerrichterm
@certitude_lab

$whoami

Certitude – Kubernetes Security – Challenge and Opportunity

> Marc Nimmerrichter
> Consultant for IT security for the last 10 years
> Mainly doing pentesting, appsec, security concepts
> Kubernetes pentests and audits, trainings, concepts, etc.
> @nimmerrichterm

> Certitude is an IT security consulting firm based in Vienna
> We do pentesting, security trainings, application security, designing secure

systems and infrastructure, etc.
> @certitude_lab

$whoami

Certitude – Kubernetes Security – Challenge and Opportunity

> Marc Nimmerrichter
> Consultant for IT security for the last 10 years
> Mainly doing pentesting, appsec, security concepts
> Kubernetes pentests and audits, trainings, concepts, etc.
> @nimmerrichterm

> Certitude is an IT security consulting firm based in Vienna
> We do pentesting, security trainings, application security, designing secure

systems and infrastructure, etc.
> @certitude_lab

We are hiring!

Agenda

Certitude – Kubernetes Security – Challenge and Opportunity

> Intro to Kubernetes
> Container isolation
> Kubernetes attacks vectors
> Common vulnerabilities
> Multi tenancy
> Opportunities for security

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

Kubernetes Master

Components

Kubernetes Nodes

kube-
controller-

manager

etcd kube-scheduler

kube-apiserver
kubelet

kube-proxy

kubelet

kube-proxy

kubelet

kube-proxy

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

> Kubelet manages the node and runtime
> Checks API server for workloads scheduled on the node
> Manages lifecycle of workloads through API
> Kubernetes removed dockershim with 1.24

Kubelet

containerd
runc

container

container

kubelet C
R

I

O
C

I

CRI-O

K8s

Kubernetes

Deployment

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

> Objects are Kubernetes
configurations

> Service objects routes
traffic to pods

> Deployment object
allows to update pods,
replicasets etc.

> Replicaset object
scales pods

> Careful:
◊ Traffic does not

actually go through a
service or deployment
-> it‘s just a
configuration object

Objects

Service

Persistent
Volume Claim

Storage
Class

External
storage

Containers

Pod

Pod

Replica
Set

Request

Kubernetes

Certitude – Kubernetes Security – Challenge and Opportunity

> A few more objects...

Deployment CrnJob

ReplicaSetDaemonSet StatefulSet Job
Replication
Controller

Pod

Container
(your code)

Vertical Pod
Autoscaler

Pod Disruption
Budget

Horizontal Pod
Autoscaler

Service

Volume

Persistent
VolumeClaim

Downward API
HosPath;
EmptyDir

SecretConfigMap

There are even more…

Objects

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

apiVersion: v1
kind: Pod
metadata:

name: nginx-pod
labels:

app: nginx
spec:

containers:
- name: nginx-cont

image: nginx:1.14.2
ports:
- containerPort: 9376

Pod & service objects

apiVersion: v1
kind: Service
metadata:

name: nginx-service
spec:

selector:
app: nginx

ports:
- protocol: TCP
port: 80
targetPort: 9376

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

> K8s objects are organized in namespaces (which is an object too)
> The kube-system namespace contains the control plane
> Some k8s objects are “namespaced” (belong to one namespace), others are not

(belong to whole cluster)

Namespace objects

K8s cluster

website
namespace

Kube-system
namespace

Admin users website developers

kube-dns

kube-proxy

kube-dashboard Pod Pod

blog service

webshop
namespace

shop developers

Pod Pod

shop service

etcd

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

> The authentication module checks who the user is
> The RBAC module checks which CRUD operations are allowed on which objects
> Admission control allows to inspect object configurations

◊ There are some default admission controllers, but you can also do custom ones

Authentication, Authorization, Admission Control

Kubernetes API Server

API
Request

Authentication Authorization
Admission
Control

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

Networking

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

> CNI standardizes how orchestrators connect containers to a network
> Enables pod-to-pod communication
> CNI plug-in assigns interfaces and IPs to pods and does IP address management
> To not depend on a particular container, network interface is configured for
dummy „pause“ aka „sandbox“ container

> Container runtime (e.g. containerd) calls CNI plug-in executable (e.g. Calico) to
add an interface to container‘s networking namespace (sandbox/pause container)

CNI

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

> CNI standardizes how orchestrators connect containers to a network
> Enables pod-to-pod communication
> CNI plug-in assigns interfaces and IPs to pods and does IP address management
> To not depend on a particular container, network interface is configured for
dummy „pause“ aka „sandbox“ container

> Container runtime (e.g. containerd) calls CNI plug-in executable (e.g. Calico) to
add an interface to container‘s networking namespace (sandbox/pause container)

CNI

runc

container

container

kubelet C
R

I

O
C

I

CRI-OK8s

Kubernetes Overview

Certitude – Kubernetes Security – Challenge and Opportunity

> CNI standardizes how orchestrators connect containers to a network
> Enables pod-to-pod communication
> CNI plug-in assigns interfaces and IPs to pods and does IP address management
> To not depend on a particular container, network interface is configured for
dummy „pause“ aka „sandbox“ container

> Container runtime (e.g. containerd) calls CNI plug-in executable (e.g. Calico) to
add an interface to container‘s networking namespace (sandbox/pause container)

CNI

runc

container

container

kubelet C
R

I

O
C

I

CRI-OK8s
veth

veth

CNI Plugin
(e.g. Calico)C

N
I

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

Overview

Host Kernel Host Kernel

Hypervisor

Guest
Kernel

Guest
Kernel

Guest
Kernel

Cont Cont Cont

Cont Cont Cont

Runtime Runtime Runtime

VMs Containers

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> Containers are just processes
◊ Kernel does not know containers

> Configuration of isolation depend on runtime (and Kubernetes)!!
◊ Different runtimes, different levels of security
◊ Runtimes are configured by Kubernetes

> Kernel namespaces and groups
◊ Cgroups are object quotas and restrict how much CPU/memory/disk the process gets
◊ Namespaces restrict what a process can see (see next slide)

Overview

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> Mount namespaces provides separate view on mounts
> Network namespaces provides new virtual network stack
> Pid namespace provides separate view on running processes
> UTS namespace provides a separate hostname for this process
> Cgroup namespace hides actual cgroup the process is running under
> IPC namespace to prevent shared memory other IPC between processes

Kernel namespaces

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> Mount namespaces provides separate view on mounts
> Network namespaces provides new virtual network stack
> Pid namespace provides separate view on running processes
> UTS namespace provides a separate hostname for this process
> Cgroup namespace hides actual cgroup the process is running under
> IPC namespace to prevent shared memory other IPC between processes
> User namespaces provides a separate user inside the container different from the

one the process is running as on the host
◊ User namespaces are NOT turned on by default in docker and most other runtimes!
◊ But can be configured

Kernel namespaces

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> Capabilities
◊ Capabilities deny privileged operations, e.g. no CAP_SYS_ADMIN, no CAP_SYS_MODULE

> Seccomp and MAC (SELinux / AppArmor) increase level of isolation
◊ Often these mechanism exist, but are not enabled by default in Kubernetes / on node OS

... Enable them for better isolation!
◊ Seccomp filters dangerous system calls, e.g. clock_adjtime, delete_module, reboot
◊ MAC denies access to file system paths (e.g. /proc or /sys) and system calls

Further measures

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> Seccomp
◊ Seccomp profile are a kernel feature

– Linux kernel has a few hundred system calls
– Only a few of them are needed by a given program
– The rest is an unnecessary attack surface
– Check out your /proc/PID/status to see which processes use seccomp

• 0 for disabled, 1 for strict, and 2 for filter
◊ K8s disables seccomp by default (Unconfined)

– Since v1.22 you can globally change default at least (alpha)
– If SeccompDefault feature gate is enabled for kubelet and --seccomp-default command

line argument set, pods use the RuntimeDefault seccomp profile whenever no other
seccomp profile is specified

◊ RuntimeDefault or custom seccomp profile can be configured in pod configuration
◊ Consider RuntimeDefault (if using uncommon runtime, check seccomp defaults first!)

– Or audit system calls and use a custom list for even better isolation

Seccomp

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

SecurityContext

seccompProfile:

type: Localhost

localhostProfile: profiles/audit.json

Seccomp
audit.json:

{

"defaultAction": "SCMP_ACT_LOG",

"architectures": [

"SCMP_ARCH_X86_64",

"SCMP_ARCH_X86",

"SCMP_ARCH_X32"

],

"syscalls": [

{

"names": [

"accept4",

"epoll_wait",

"pselect6",

...

],

"action": "SCMP_ACT_ALLOW"

}

]

}

> Now violations are logged

> Grep executable to find used systemcalls

> Use that to build your custom profile

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

SecurityContext

seccompProfile:

type: Localhost

localhostProfile: profiles/block.json

Seccomp
block.json:

{

"defaultAction": "SCMP_ACT_ERRNO",

"architectures": [

"SCMP_ARCH_X86_64",

"SCMP_ARCH_X86",

"SCMP_ARCH_X32"

],

"syscalls": [

{

"names": [

"accept4",

"epoll_wait",

"pselect6",

...

],

"action": "SCMP_ACT_ALLOW"

}

]

}

> When profile is complete
◊ Change defaultAction to error mode

> Pod is terminated upon violation

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> In some node OSes (e.g. CoreOS), SELinux is configured, but not enabled
> There are some incompatibilities with certain non-local volumes

SELinux

container

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> The container runs under a specific user
> In most runtimes, the user namespace is not enabled by default

◊ User on the host = user in the container

> Therefore, a non-root user (uid/gid>0) should be selected to run the container

> User namespaces could be enabled
◊ Are incompatible with some non-local volumes

> In case there is a problem with container
isolation, damage might be reduced

Users

image

root

host

root

Without user namespaces:

container

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> The container runs under a specific user
> In most runtimes, the user namespace is not enabled by default

◊ User on the host = user in the container

> Therefore, a non-root user (uid/gid>0) should be selected to run the container

> User namespaces could be enabled
◊ Are incompatible with some non-local volumes

> In case there is a problem with container
isolation, damage might be reduced

Users

image

root

host

Uid=11111

With user namespaces:

Kubernetes attacks vectors

Certitude – Kubernetes Security – Challenge and Opportunity

> Attack chain example

Example vulnerability

Application vuln

Image not hardened

Vulnerable kernel

Node not hardened

Cluster vulnerability

Attack chain

RCE in application

Get Shell

Container escape

Compromise workloads

Compromise clusterK8s cluster

K8s node

Container

Image

App

Attack chain example

Kubernetes attacks vectors

Certitude – Kubernetes Security – Challenge and Opportunity

> Attack chain example  With access to cluster (e.g. multi-tenancy),
you are already here

Example vulnerability

Application vuln

Image not hardened

Vulnerable kernel

Node not hardened

Cluster vulnerability

Attack chain

RCE in application

Get Shell

Container escape

Compromise workloads

Compromise clusterK8s cluster

K8s node

Container

Image

App

Attack chain example

Kubernetes attacks vectors

Certitude – Kubernetes Security – Challenge and Opportunity

> Microsoft released a threat matrix for k8s

Threat matrix

https://www.microsoft.com/security/blog/2021/07/21/the-evolution-of-a-matrix-how-attck-for-containers-was-built/

Kubernetes attacks vectors

Certitude – Kubernetes Security – Challenge and Opportunity

> Microsoft released a threat matrix for k8s

Threat matrix

Runtime
vuln

Kernel
vuln

https://www.microsoft.com/security/blog/2021/07/21/the-evolution-of-a-matrix-how-attck-for-containers-was-built/

Common vulnerabilities

Priv
flag

Hostpid Hostpath Hostnetw Hostipc Example privilege escalation techniques

• chroot to host fs and read secrets mounted in any pod on node
• If you can schedule pod to control plane node, read secrets from etcd

• Nsenter into namespace of process 1 (init) and execute shell on node

• Mount host filesystem and go from there
• Exploit cgroup user mode helper programs (metasploit module)
• Install a bad kernel module
• Cgroup’s release_agent feature (Felix Wilhelm)

• Kubeconfig files with secrets
• chroot to host fs and read secrets mounted in any pod on node
• If you have SSH network access, add an authorized SSH key

• Kill processes
• Look for passwords/tokens, e.g. in command line args, env. vars

• Sniff traffic
• Access services bound to localhost
• Bypass network policy

• Check available IPC mechanisms and read/write from/to them

Good overview:
https://bishopfox.com/blog/kubernetes-pod-privilege-escalation

Y Y YYY

YY

Y

Y

Y

Y

Y

Certitude – Kubernetes Security – Challenge and Opportunity

Privileged containers / host-namespaces used

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Outdated Kubernetes
◊ Many companies or providers often multiple major versions behind

– Might lead to missing security features
◊ At least patches should be applied regularly and a maintained major version used!
◊ Examples

– Symlink exchange allows host filesystem access (CVE-2021-25741)
• Affects kubelet and applies to multi-tenant clusters

– Secrets exfiltration (CVE-2021-25742)
• Affects nginx ingress controller and applies to multi-tenant cluster

Outdated software

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Outdated runtime
◊ Example

– Runc allowed escape by overwriting /proc/[runc-pid]/exe (CVE-2019-5736)
• By executing /proc/self/exe within container (custom entrypoint for new

container or exec in existing container), /proc/[runc-pid]/exe would point to
runc on the host; attacker can overwrite it (if container runs a root), which
results in a modified runc on the host; next call of runtime results in root

Outdated runtime

container

runc run or
runc exec runc init

container

user process
execve

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Outdated runtime
◊ Example

– Runc allowed escape by overwriting /proc/[runc-pid]/exe (CVE-2019-5736)
• By executing /proc/self/exe within container (custom entrypoint for new

container or exec in existing container), /proc/[runc-pid]/exe would point to
runc on the host; attacker can overwrite it (if container runs a root), which
results in a modified runc on the host; next call of runtime results in root

Outdated runtime

container

runc run or
runc exec runc init

container

runc
execve /proc/self/exe

usr/sbin/runc on host

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Outdated runtime
◊ Example

– Runc allowed escape by overwriting /proc/[runc-pid]/exe (CVE-2019-5736)
• By executing /proc/self/exe within container (custom entrypoint for new

container or exec in existing container), /proc/[runc-pid]/exe would point to
runc on the host; attacker can overwrite it (if container runs a root), which
results in a modified runc on the host; next call of runtime results in root

Outdated runtime

container

runc run or
runc exec runc init

container

runc
execve /proc/self/exe

usr/sbin/runc on host
That‘s also why running container as root can be dangerous!

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Outdated runtime
◊ Example

– Runc allowed escape by overwriting /proc/[runc-pid]/exe (CVE-2019-5736)
• By executing /proc/self/exe within container (custom entrypoint for new

container or exec in existing container), /proc/[runc-pid]/exe would point to
runc on the host; attacker can overwrite it (if container runs a root), which
results in a modified runc on the host; next call of runtime results in root

Outdated runtime

container

runc run or
runc exec runc init

container

runc
execve /proc/self/exe

usr/sbin/runc on host
That‘s also why running container as root can be dangerous!
And why user namespaces would be a good idea!

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Kernel is a large codebase with lots of vulnerabilities not yet discovered
> Kernel vulnerabilities are published regularly

◊ E.g. CVE-2022-0185 from January
– Exploit would need CAP_SYS_ADMIN
– Using unshare, one can easily escalate to CAP_SYS_ADMIN on default Kubernetes

• Because no seccomp by default that blocks unshare

Outdated kernel

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Dirty COW container escape
◊ DEMO

Outdated kernel

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Dirty COW container escape
◊ Race condition in the way Linux handles read-only private mappings upon copy-on-write
◊ Under certain circumstances, someone can overwrite the original rather than the copy
◊ scumjr's dirtycow-vdso exploit

– vDSO is a memory area mapped into every process’ address space to optimize
performance for certain system calls

– Exploit modifies clock_gettime() in vDSO to run shellcode
– Shellcode waits for a root process to call it and invokes reverse shell to an

IP:port

Outdated kernel

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Dirty COW container escape

Process A (root)

vdso

Process B

vdso

Process C

vdso

vdso

clock_gettime()

Container 1

Outdated kernel

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> Dirty COW container escape

Process A (root)

vdso

Process B

vdso

Process C

vdso

vdso

clock_gettime()

Container 1

Outdated kernel

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> Dirty COW container escape

Process A (root)

vdso

Process B

vdso

Process C

vdso

vdso

clock_gettime()

Container 1

Outdated kernel

Container isolation

Certitude – Kubernetes Security – Challenge and Opportunity

> Dirty COW container escape

Process A (root)

vdso

Process B

vdso

Process C

vdso

vdso

clock_gettime()

Container 1

Reverse shell

Outdated kernel

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> RBAC not configured correctly
◊ Many users, objects, etc. and therefore misconfigurations
◊ Limited to CRUD (see next slide)

RBAC issues

etcd

Kubernetes API Server

API
Request

Authentication Authorization
Admission
Control

Containers

API Server

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> RBAC only applies to k8s objects accessed via the API
◊ Only CRUD
◊ Does not inspect created objects

> It can be bypassed with the pod create privilege
> Admission controller needs to be used

RBAC issues

service secretpod A

pod A Pod C

Master Node

Authorization

User

Host OS

Worker Node

Containers

API Server

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> RBAC only applies to k8s objects accessed via the API
◊ Only CRUD
◊ Does not inspect created objects

> It can be bypassed with the pod create privilege
> Admission controller needs to be used

RBAC issues

service secretpod A

pod A Pod C

Master Node

Authorization

Access pod A
User

Host OS

Worker Node

Containers

API Server

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> RBAC only applies to k8s objects accessed via the API
◊ Only CRUD
◊ Does not inspect created objects

> It can be bypassed with the pod create privilege
> Admission controllers (or different node pools) need to be used

RBAC issues

service secretpod A

Priviliged
pod Bpod A Pod C

Master Node

Authorization

Access pod A
User

Host OS

Access pod A via pod B

Worker Node

Create pod B

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Missing container hardening (pod’s securityContext)
◊ seccomp not enabled
◊ “allowPrivilegeEscalation: false” not configured
◊ readOnlyRootFilesystem not configured

> Missing cluster hardening
◊ Recommended admission controllers not configured
◊ Seccomp not enabled by default

> Nodes not on an immutable container OS
> Protecting from dangerous workloads

◊ Pod Security Admission
– 3 levels: privileged, baseline, restricted

Missing hardening measures

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

Missing network policies

Kubernetes Cluster

Pod

cont cont

Pod

cont cont

Firewall

> By default all communication is allowed

> Other devices on
network, e.g.
◊ Cloud metadata service
◊ Vulnerable applications

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

Missing network policies

Kubernetes Cluster

Pod

cont cont

Pod

cont cont

Firewall

Kubernetes network PolicyKubernetes network Policy

> By default all communication is allowed
> If there is an ingress policy for pod, ingress traffic is denied by default
> If there is an egress policy for pod, egress traffic is denied by default

> Other devices on
network, e.g.
◊ Cloud metadata service
◊ Vulnerable applications

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> All service „hide“ between one or the
same set of Ips
◊ Ingress

– „By default“, a cluster has a single
external IP (ingress controller)

– Node IPs could also be used
• But hosts could be scaled up or

down and IPs might change
◊ Egress

– Traffic leaves with node-IP
• Since pod can run on any host (by

default), it could be any node IP

Firewalling outside cluster

Cluster 1 Cluster 2

Se
rv

ic
e

1

Se
rv

ic
e

2

Se
rv

ic
e

3

Se
rv

ic
e

4

Se
rv

ic
e

5

Se
rv

ic
e

6

Se
rv

ic
e

7

Se
rv

ic
e

8

IP 1 IP 2

Firewall

Network x
IP 3

IP 3

System 1

System 2

Common vulnerabilities

Certitude – Kubernetes Security – Challenge and Opportunity

> Changes in modules might render certain controls ineffective
◊ Network plugins have different levels of support for certain object types

(e.g. network policies)
> Debugging artefacts

◊ Nodes used for debugging, which might introduce vulnerabilities
◊ Anonymous_auth enabled for api-server or kubelet
◊ Old/vulnerable pods

> Secrets in images
◊ E.g. Microsoft had the DP API encryption key in images (same for all images)

– https://certitude.consulting/blog/en/windows-docker-dp-api-vulnerability-cve-2021-1645/

Other issues

https://certitude.consulting/blog/en/windows-docker-dp-api-vulnerability-cve-2021-1645/

Multi-tenancy

Certitude – Kubernetes Security – Challenge and Opportunity

> Generally, avoid multi-tenant clusters
◊ Except you really know what you are doing

> Normal container runtimes do not provide enough isolation
◊ There are runtimes built for better security

– Kubernetes provides RuntimeClass to use different runtimes in the same cluster

> Cluster configuration mistakes are a large attack vector
> Software-vulnerabilities in cluster components are a large attack vector

Does kubernetes allow multi-tenancy?

Multi-tenancy

Certitude – Kubernetes Security – Challenge and Opportunity

> How do cloud providers build multi-tenant clusters?
◊ They don‘t: In GKE, AKS, EKS each customer gets own cluster and virtual hardware

> What about their Container-as-a-Service offerings?
◊ They use container runtimes designed for security

– Based on virtualization, lightweight VMs (Kata containers, Firecracker)
– User-mode kernels (Nabla Containers, gVisor)

◊ AND they have a secure architecture covering network separation, access control, etc.

How do cloud providers build multi-tenant clusters?

Container

LibraryOS

Container

LibraryOS

Container

LibraryOS

Nabla containers

Host Kernel

VM

Container

KVM

Host Kernel

VM

Container

VM

Container

Firecracker/Kata

Container Container Container

gVisor gVisor

Host Kernel

gVisor

Kernel Kernel Kernel

Multi-tenancy

Certitude – Kubernetes Security – Challenge and Opportunity

> What would need to be done for a multi-tenant cluster?
◊ Secure containers or separate resource pools (nodes) in separate network segments

(otherwise container escape)
◊ Separate overlay networks or mandatory network policies (otherwise other tenants can

be reached)
◊ Admission controllers to restrict dangerous objects being created (otherwise

privileged containers/disabled namespaces)
◊ Make sure one tenant cannot use another tenants private images cached on node

(AlwaysPullImages admission controller)
◊ Separate namespaces and strict RBAC configuration (otherwise access to objects from

other tenants)
◊ Always up-to-date cluster, runtime, etc. (otherwise escape vulnerabilities)
◊ All exposed components must support multi-tenancy (e.g. monitoring tools)
◊ Many other things to consider
◊ → No room for mistakes…

What would need to be considered for a multi-tenant cluster?

Opportunities

Certitude – Kubernetes Security – Challenge and Opportunity

> Many (free or commercial) tools to help you spot configuration issues
> Free tools are e.g.

◊ StackRox kube-linter: Checks YAML files for issues
◊ AquaSec kube-bench: Runs pod to check cluster against CIS-benchmarks
◊ AquaSec trivy: IaC scanner for K8s, docker images, dockerfiles, terraform
◊ CyberArk kubiscan: Identify risks in RBAC configuration
◊ Quay clair: Image vulnerability scanner
◊ K8s krew plugin “access-matrix”: Useful to check RBAC
◊ Corneliusweig rakkess: Useful to check RBAC
◊ Quarkslab kdigger: Check context/find vulnerabilities from inside a pod

Not all is bad!

Opportunities

Certitude – Kubernetes Security – Challenge and Opportunity

> Images can be hardened
◊ E.g., no shell, no package manager, no tools (curl/wget, etc.)

> Cluster can be hardened
◊ Often not default!

> Small services easier to understand
◊ Easier to create security profiles

> Granular network policies
> Granular containerization
> So, with the right architecture,

we might be able to improve security

Not all is bad!

API GATEWAYREST
API

REST
API

REST
API

REST
API

Web
UI

Shipping Service

Inventory Service

Account Service

Browser

Mobile App

Account DB

Inventory DB

Shipping DB

Thanks for your attention!

Certitude – Kubernetes Security – Challenge and Opportunity

> Follow us on social media
> @nimmerrichterm
> @cert_it_ude / @certitude_lab
> Certitude Consulting GmbH

Questions?

